
White Paper

Decision engines.
Powering financial services.

Utsav Kapoor
Vice President, Cloud and API Platforms
United States Information Solutions

September 2021

http://www.equifax.com

Contents
What is a decision engine? ... 3
The most basic form of a decision engine implementation
Use case 1: Using a decision engine for new consumer identity and credit check
Use case 2: Using a decision engine for building a consumer base for a marketing campaign
Use case 3: Using A decision engine for prescreen offers and back-office BI capabilities
Use Case 4: Using a decision engine for multiple processing during wireless customer onboarding

Core components of a decision engine .. 9
Business Rules Management System (BRMS)
Ingress — Egress

Differentiating components of a decision engine 10
Solution Orchestrator
Data Orchestrator
Modeling Engine
Attribution Engine
Business Intelligence & Reporting
Strategy Optimizer
Case Manager
Batch
Streaming
Back-office User Interface
Operational Metrics Dashboard
Microservices Architecture

Best practices for success .. 14
Well set customer expectations
Clearly defined business outcomes
Solution Simplification
Go to Market Strategy
Data-Driven Insights for Continuous Improvement

Avoiding pitfalls .. 18
Architecture
Scope of A Decision Engine
Ingress / Egress
Modeling and Attribution Tools
User Interface
Data Cleansing and Entity Resolution

Selecting the right decision engine ... 20

Conclusion ... 21

Businesses are constantly seeking ways to acquire new customers,
as this metric is a leading indicator of business growth. Driving higher
valuations in the pre-pre-IPO stage and top-line growth in public
companies is an aspirational goal of all successful businesses.

As financial institutions evaluate ways to find new customers or retain existing,
fierce competition is breaking out in the marketplace. Companies must think
outside the box about how to target and acquire customers while managing risks
and maintaining healthy margins. It’s a fine balancing act leading more companies
to look at deploying decision engines to streamline and automate their customer
acquisition, retention, and risk management processes.

Whether it’s a bank striving to acquire new credit card customers or an online
mortgage lender finding new home buyers, the user experience is visibly different in
cases where decision engines are used in place of traditional manual processes.

What is a decision engine?
A decision engine is a technology platform that automates the execution of well-
defined business rules to serve a specific use case or set of use cases using a
standard input and output payload. Decision engines can be real-time transactional
or batch-based systems.

There are various use cases, ranging from simple to complex. See a very simplistic
example in Diagram 1, below.

Over the years, decision engine implementations have evolved to varying degrees.
Companies are finding creative ways to automate processes like data orchestration,
risk analytics, and customer acquisition. Demand for more sophisticated features
is on the rise, and decision engine providers are constantly evolving and innovating
platforms — sometimes going past the tipping point.

This white paper provides a deep dive into the architecture and usage of
decision engines, with best practices from successful deployments at financial
services companies.

Diagram 1: The most basic form of a decision engine implementation

- 3 -

Use Case 1: Using a decision engine for new consumer identity and credit check
A regional utility company using a decision engine to verify identity and perform a credit
check on a new consumer’s application for connection.

Diagram 2

In this example, the decision engine serves multiple purposes, all tied to a common use case
for the utility company.

Purpose 1: Orchestrate data access from identity verification providers and credit bureaus
Purpose 2: Execute business rules to verify consumers identities or request more data
Purpose 3: Perform credit risk assessment to determine if a deposit is required
Purpose 4: Meet regulatory requirements like FCRA and adverse action notifications
Purpose 5: Give insights to the utility company on things like fraud rates and credit invisibles

The utility company streamlines the application process and can use the new insights to adjust
its fraud or credit risk strategy and explore alternate data assets to improve approval rates.

- 4 -

Use Case 2: Using a decision engine for building a consumer base for a
marketing campaign
A credit union is using a core processor software to run its banking operations.
The software can integrate with a decision engine, which can help the FI create
marketing campaigns, target new customers, and prescreen them in advance to
speed up the offer acceptance process.

Diagram 3

Here, the decision engine is attempting to solve two distinct use cases: marketing
and risk management. Without a decision engine, the credit union would have
resorted to traditional methods of receiving batch files from the data providers,
and then running direct mail campaigns. Instead, the decision engine automates
several purposes.

Purpose 1: Setup access to credit and demographic data for target marketing
Purpose 2: Link entities across disparate data sources
Purpose 3: Apply predefined segmentation criteria to narrow down the target pool
Purpose 4: Run business rules on target pool to assess risk
Purpose 5: Create consumer-specific offers based on predefined criteria
Purpose 6: Append consumer data and attributes with offers to pass back to
 the credit union
Purpose 7: Transfer large quantities of data between organizations

Decision engines can optimize and automate workloads across different use cases
that are interdependent. One of the unstated benefits of using a decision engine is
handling Class 5 data (PII). The customer doesn’t have to worry about data privacy
and protection laws involved in this process, as the decision engine takes care of
those requirements — and the PII sent to the customer is encrypted.

We can now understand how the scope of decision engines is expanding. While the
core functions are still in play, data transmission techniques including encryption
and packaging could be considered ancillary features.

- 5 -

Use Case 3: Using A decision engine for prescreen offers and
back-office BI capabilities
Decision engines can involve much more complex deployments. A large bank wants
to integrate its digital channels with a decision engine in the background to generate
real-time offers for its customers. Since some products involve extending a large line
of credit, the bank wants to use a more sophisticated risk assessment strategy.

The bank wants support for all its digital channels, including POS (point-of-sale)
terminals at a branch. The bank’s risk officer wants to use custom attribution and
modeling in their risk assessment and wants BI capabilities to tune their strategy
over time. The operations team wants reporting and UI capabilities to meet
compliance requirements.

The decision engine is becoming more of an enterprise platform.

Diagram 4

Since different channels adopt different intake fields, a layer of abstraction is
required, as the input to the decision engine must be standard. For example, on
digital channels, all PII fields may be requested, but for ATM transactions, the bank
may have to accept only the debit card number and internally look up the customer’s
PII to pass on to the decision engine.

- 6 -

An integral part of a mature decision engine is a Business Rules Management
System (BRMS), which allows business users to not only define the business rules
that support their risk strategy, but also perform data attribution and model
implementation. These are advanced capabilities that often get highlighted as the
differentiating factors when comparing decision engines.

Purpose 1: Set up access to data sources with built-in waterfall logic
Purpose 2: Aggregate raw data for attribution
Purpose 3: Provide the ability to create attributes on raw or aggregated data
Purpose 4: Use attributes in model implementation and score calculation
Purpose 5: Execute business logic as decision trees
Purpose 6: Execute regulatory checks to meet compliance requirements
Purpose 7: Create real-time offers for customers and pass back via the channel
 of origination
Purpose 8: Provide operations reporting and support for compliance requirements
Purpose 9: Activate insights activation using transactional data
Purpose 10: Optimize strategies to improve take rate or approval rates

Some features in this example can be common causes for the downfall of a decision
engine and should be evaluated carefully.

Ingress — support for multiple
channels and varying payloads

Decision engines require a standard
set of input parameters for optimal
performance. When there are
variations in input, additional work
is required to accommodate those
variations and not result in unhandled
exceptions. For example, a digital
channel captures full PII including SSN,
while mobile may only capture the last
four digits of SSN and a ZIP code.

The abstraction layer needs to add
additional data to complete the partial
input from the mobile channel before
making a callout to the decision engine.
Another option is to allow the decision
engine to accept partial input but add
supplemental data before making a
callout to data sources.

If left unaddressed, this could lead
to errors from the data source and
unhandled exceptions in the
decision engine.

Modeling and attribution — IDE for
authoring attributes and models and
performing audits and model validations

Most large FIs expect the decision
engine to have a business user-friendly
Integrated Development Environment
(IDE), where policy managers can
author new attributes and build new
models, and audit and validate their
work before deploying to production.
Since modeling and attribution is an
analytical exercise, the IDE should
support various modeling techniques
and compatibility with other modeling
tools like SAS, R, etc.

Insufficient mature analytical
tools will likely lead to a poor user
experience and could potentially
introduce erroneous code into a
live environment, causing
significant damage.

Product managers should take this
into account. In many cases, decision
engine providers opt to partner
with third-party vendors with niche
products or tools that play in this
space. Building these integrations
allows companies to put their
best approach forward by offering
combined capabilities.

Back office UI — user interface to
support back-office operations

Many decision engines provide
back-office user interfaces to allow
customers to generate operational
reports, view metrics, or research
specific transactions or the underlying
data. While this is not uncommon,
decision engine providers must
carefully evaluate how the customer
intends to use these capabilities before
making them available.

In many cases, the customers’
operations team could be a contact
center. The user interface may
not scale, heavy user activity may
slow incoming transactions, or you
may find yourself customizing the
UI based on individual customer
requirements. Several scenarios play
out here, and while modern cloud-
based technologies address some of
these concerns, upfront consulting
and end-user training are essential
to communicate the value of these
capabilities and their proper use.

- 7 -

Use Case 4: Using a decision engine for multiple processing during wireless
customer onboarding
Decision engines can also be an end-to-end transactional solution. One of the
largest telecommunication companies in the country wants to use a decision
engine to target new customers, verify their identity, mitigate fraud, and
manage risk and collections.

Decision engine implementation is highly complex, spanning multiple interrelated
use cases. While many would argue customers should use RESTful APIs to solve
individual use cases, often customers end up choosing a decision engine as it
optimizes the end-to-end process and minimizes upfront investment by reducing
the number of integration points.

Diagram 5

The scope of the decision engine expands in this example. While the it serves
its purpose, these types of implementations often require ongoing tuning and
management, so organizations should consider the ongoing operating costs.

- 8 -

Core components of a decision engine
Decision engines have several essential components that give the provider a
competitive edge and a better shot at success.

Business Rules Management System (BRMS)
At a minimum, the decision engine needs a Business Rules Management System
(BRMS). This is where a business user can implement rules for the use case that the
decision engine solves. This is also where many BRMS offer users the ability to build
process flows and plug in business rules at logical points within those process flows.

A business rule is a set of conditions, which, when met, trigger an action — a
simple “if-then-else” format. Business rules in mature BRMS can offer additional
capabilities, like allowing to define some pre-conditions that must be met for the
business rule set to trigger, or a set of post-actions that are triggered after
successful execution of the business rules. A group of logically aligned rules
can be grouped into what a BRMS refers to as a rule set.

A good BRMS offers the ability to use predefined models from a library of rule
definitions and functions to create new rules and process flows. A BRMS should also
test standalone rules and sub-processes. Finally, a good BRMS should deploy rules
in a test or live environment. Change management associated with a BRMS plays
an integral part in determining the user experience.

BRMS often simulates Champion/Challenger scenarios (also known as A/B testing).
This is a useful feature that allows customers to implement challenger strategies
and test the performance of these strategies against existing strategies. Companies
use this to optimize what’s running in production by making incremental tweaks and
throttling a fraction of the volume through the changes to evaluate performance.
This has proven to be an extremely successful capability in BRMS.

Decision engine providers are starting to use AI and ML (machine learning) to train
the BRMS to make optimizations and drive efficiency and improve performance.

Ingress — Egress
Decision engines have Ingress and Egress payloads. Like any process, a decision
engine requires a degree of standardization in the input parameters and output
parameters. Even in environments involving big data, some data normalization is
required, and a schematic must be developed to use a decision engine.

Why do the payloads require standardization? A decision engine works best if the
underlying rules are well-defined. To do this, the BRMS needs a business object
model that dictates the rule definitions, conditions, and actions. As one would
imagine, when building a business object model that the business rules can use, the
parameters need to be well-defined. Let’s use an analogy here to drive the point
home. Content written using words that are not defined in any dictionary would only
qualify as gibberish. For the same reasons, business rules written using definitions
and functions not defined in a business object would mean nothing. Worse, they
would likely introduce run-time errors in the system.

Diagram 6: A sample process flow
diagram in a BRMS implementation

- 9 -

Diagram 7: Sample Ingress / Egress payloads and how they’re used in business rules

Modern decision engines provide RESTful API with JSON payloads. JSON is a more
human-readable format that makes interpretation of the Ingress/Egress payload
easier. Using JSON payloads and RESTful API allows browser compatibility and
ease of integration with digital channels.

While standardizing the payload is essential for a decision engine to function
optimally, more and more data processed via decision engines is becoming
unstructured. Additionally, customers often want to pass internal data to a decision
engine and use it in the business rules. Decision engines must have the ability to
pass additional data in the input and pass additional fields in the output.

A poorly designed Ingress framework could lead to the failure of the decision
engine, so this aspect needs to be carefully architected and implemented.

Differentiating components of a decision engine
Core components aren’t the only important factor of a decision engine. Most
customers are looking for more than just an API-enabled BRMS system. Decision
engines can have many components, depending on the provider.

Solution orchestrator
Decision engine power users often use the same implementation to accomplish
multiple use cases. To put it simply, customers use the same instance of the decision
engine, with the same input and output payloads, but tweak the orchestration code
to execute varying business rules.

The decision engine architecture should support a solution configuration tool, or a
solution orchestrator. This tool can be an internal fulfillment tool or an external
self-service tool (depending on the type of decision engine). A solution orchestrator
can configure different use cases tied to the solution by assigning a unique
orchestration code. When triggered, the decision engine knows which orchestration
to execute and what rules to implement.

This capability allows customers to orchestrate multiple purposes, optimizing
their investment in a decision engine and driving up efficiency.

Data orchestrator
In the financial services industry, companies often pull different data sources and

- 10 -

execute business rules to accomplish end-to-end use cases. While customers
could choose to feed raw data from different data sources to the decision engine,
this design is clunky and most decision engines will not have native support. Today,
most data sources are available via RESTful API. Customers prefer that the decision
engine directly access the API corresponding to the data source and pull in the
necessary data to apply the business rules.

Not only is this design pattern more optimal and scalable, but it also reduces the
size of the payload, improving system performance. Additionally, this architectural
pattern results in most decision engines needing a data orchestration layer, where
different data sources can be configured for access.

A data orchestrator not only provides the ability to source and enable access to data
sources but also allows users to sequence data sources or define waterfall criteria.

Modeling engine
One of the more sophisticated features of a decision engine is the ability to
implement analytical models. Using score models allows companies to adopt a
statistical approach to solving business problems.

Model engines must provide the ability to ingest source code of models developed in
various languages and provide hosting and run time capabilities. A modeling engine
also needs to enable customers to code new models and scorecards. Developing a
modeling engine that provides statisticians with the ability to develop new models
and perform model validations is a much more sophisticated task that needs to be
carefully evaluated. There are many industry-leading model development tools, like
SAS, that are more mature and better suited to perform the task.

A poorly designed modeling engine could quickly become one of the failure points
of a decision engine, as it may end up providing a poor customer experience. Any
errors in the underlying libraries could introduce errors in a live environment,
costing decision engine providers big fines and/or losses.

Attribution engine
Most decision engines consume vast amounts of data to make accurate decisions.
The raw data being fed to the decision engine from the source often needs to
be aggregated to perform modeling and analytics. For example, a business rule
calculating the debt-to-income ratio needs to be fed the sum of total debt and the
sum of total income as represented across every consumer account. This concept of
summing debt and income is accomplished via an attribution engine.

Attribution engines provide a library of functions that allows users to author new
attributes. The engine has a pre-baked business object model, which represents
the data that the engine can consume. Users can use the object model to access
fields from the data source payload and apply functions on top of it. Further, the
attribution engine allows users to create variables and definitions that support
the calculation of a more complex attribute.

Since attribution is a specialized skill, the tool needs to offer users ways to perform
audits. This ensures attributes are validated before being fed to a scoring model or
used directly in business rules.

Like the modeling engine, the attribution engine also has pitfalls. A poorly
designed attribution engine will likely lead to a poor user experience or inaccurate
calculations, which could prove costly in a live environment. While there are several
analytical tools in the market, not all can consume data source payloads in a raw
format. Therefore, having a tool that can do both is a differentiating capability that
will give the decision engine provider a competitive advantage.

A poorly designed
modeling engine
could quickly
become one of the
failure points of a
decision engine.

- 11 -

Business intelligence and reporting
Decision engines are often end-to-end transaction processing systems. Over time,
users like to tap into and perform analysis on the build-up of transactional data to
improve their business performance.

Transaction data is separate from raw data being fed to the decision engine from
various data sources. Having the ability to perform analysis and get insights across
this universe of raw and transactional data using a business intelligence (BI) tool
gives users a significant advantage in improving their process performance.

Decision engines can leverage various cloud providers and associated tools to allow
users to create BI reports. Sometimes insights from BI reports end up plugging
significant gaps in use cases or leading to the implementation of a new orchestration
to solve unaddressed scenarios.

FIs rely on BI and insights to improve their performance, so this capability becomes
a key differentiator for decision engine providers to consider on their roadmaps.

Strategy optimizer
A decision engine can automate the consumption of these insights and recommend
optimizations to the process flow, or even the end-to-end strategy.

A strategy optimizer is essentially a feature built on top of the existing BRMS that
allows users to tweak business rules or the process flow to improve performance or
business outcomes. These tweaks are a result of insights generated by the BI tool.

A strategy optimizer also allows users to run a champion/challenger comparison
with the tweaks to compare and contrast how the changes are performing.
Further, the strategy optimizer should provide the ability to parameterize key fields
used in business rules, so they can be easily modified to evaluate the outcome.

The strategy optimizer is a capability that allows users to perform regression
analysis on their end-to-end process before and after making adjustments to the
decision rules.

Case manager
Another popular feature in large complex implementations of decision engines is a
case manager. Often the use case implemented involves outcomes that require a
manual review from a customer representative. A case manager allows customers to
view these transactions and perform a manual verification to close the application
with a decision.

Case managers can serve multiple use cases and have varying implementations,
which is why they are not a core capability of a decision engine, but a differentiating
one. Decision engine providers must carefully evaluate case management as a
capability that is in line with their product strategy. Case management capabilities
involve significant research and design around the user experience, so decision
engine providers should factor in that aspect.

Batch
Batch is another way customers use decision engines to process workflows in an
offline environment.

The only thing that’s different in this model is how Ingress/Egress happens.
Instead of sending real-time payloads, customers feed batch files with records
formatted in a certain way for the decision engine to process. The output is also a
batch file. This model is popular in marketing use cases where customers want

In use case #1, the utility
company found that too
many new applications were
being rejected because the
identity verification step
was returning mismatched
addresses. On further
analysis, the utility company
determined the address
mismatch rate was high
because a chunk of the
applicants were students
moving residences during
the summer. The utility
company expanded the
address match to include
previous addresses, and by
making this change, they
improved approval rates. A
strategy optimizer combined
with BI tools allows companies
to perform analysis and make
adjustments to determine if it
improves results.

- 12 -

large segments of qualified customers to reach out to via campaigns.

Streaming
Data streaming is an emerging trend. A decision engine could have an API that
customers can integrate with and stream real-time updates. This model can be
useful in scenarios where customers use decision engines to alert them of any
changes in the underlying data associated with the user base or generate triggers.

Streaming capabilities are a one-way interaction, where the decision engine replays
changes/updates back to a listener set up on customers’ systems. There are several
use cases where this capability is extremely useful, including debt monitoring
and life events.

Back-office user interface (UI)
Decision engines cater to many use cases that often involve manual tasks, including
case management or order entry. It is not uncommon for customers to ask for a
back-office UI built on top of the system-to-system base that a decision engine
uses. In a contact center environment, the back-office UI could be used to view
details of a transaction and perform an override on the existing disposition. A back-
office UI could also serve as a case management tool, where a customer rep uploads
additional documents associated with manual verification or review various data
attributes in more detail to determine a disposition.

A business user could use a back-office UI to generate operational reports and
determine user activity and performance metrics or set up new users and control
their access levels.

If the customer uses a decision engine in a POS environment to approve potential
customers for a line of credit, then the back-office UI could be used manually to
enter new applications for an instant decision outcome. For example, a flooring
company is running a promo and offering low-interest financing to interested
homeowners. A sales rep onsite could use the decision engine’s back-office UI to run
the transaction on his device and provide an offer to the homeowner.

While there are several benefits of providing a back-office UI, there are potential
pitfalls. A poorly designed UI will likely create a poor customer experience, and even
if the underlying decision engine is functioning properly, the customer will likely
feel frustrated by the experience. Another challenge here is customizations. It’s
not uncommon for customers to want different fields on an order entry page vs.
using something common. Customizations can break the mold of the product and
force decision engine providers to move away from a multi-tenant product to a
standalone application, which will likely lead to higher operating costs.

Operational metrics dashboard
Decision engines can be used in low- or high-volume scenarios. In a high-volume
scenario, customers typically have policy owners or process owners that govern
what the decision engine should be doing and monitor the performance. These
policy owners are responsible for ensuring that the decision engine is performing
optimally and evaluate performance metrics and make tweaks to the system.

Most modern SaaS platforms are architected in a way that involves sophisticated
events and logging frameworks. These frameworks measure everything associated
with the platform. Some of these events represent operating metrics that could be
insightful for the policy owner. Decision engine product managers should consider
exposing some of these metrics via an ops dashboard to the policy owner, so they
can view everything in one place.

Decision engines
cater to many use
cases that often
involve manual
tasks, including case
management or
order entry.

- 13 -

The metrics dashboard is also useful when determining system performance and
evaluating it against contractual Service Level Agreements (SLA).

Microservices architecture
When we talk about a decision engine, we should consider implementation
and setup. Capabilities including solution orchestration and data orchestration
are critical, but for these capabilities to work, we need to lean on a modern
microservices architecture.

Most of the decision engine’s capabilities need to be configurable and turned
on or off easily, based on customers’ needs. A microservices architecture allows
features to be developed as standalone capabilities that are discoverable in the
orchestration layer. This architecture allows product development teams to expand
the capabilities of a decision engine and continue to enrich the feature set, while
also allowing fulfillment teams to configure these for each customer.

In essence, a microservices architecture allows decision engine implementations to
be more configurable, rather than need custom development. Not only does this
speed up revenue, but also supports future changes and the compatibility of
the solution.

Best practices for success
Even with all the best ingredients, sometimes things go wrong. Decision engine
providers should follow several best practices to ensure implementation success
and avoid any potential pitfalls.

Well-set customer expectations
With any software project, poorly managed customer expectations will likely lead to
high costs, low quality, and undesirable outcomes. While product-based companies
can help control expectations by defining boundaries around their product’s
capabilities, configurability is necessary for a decision engine.

Decision engines have many applications. While the simplest implementations
tend to be smoother due to well-defined parameters, as complexity increases,
the amount of configured or customized features increases. This will inadvertently
introduce elements and aspects of customer experience, which start to fall outside
the bounds of what the decision engine was meant to do.

In essence, a
microservices
architecture allows
decision engine
implementations
to be more
configurable.

- 14 -

Clearly defined business outcomes
Decision engines can be configured to accomplish multiple tasks, so it’s important
to define the business outcomes upfront. You can tweak these along the way and
make necessary adjustments to the implementation, but the starting point cannot
be a moving target.

Providers need to lean on superior consulting abilities to better understand what
the customer is trying to solve with the decision engine to create well-defined use
cases with outcomes.

There is a lot more that would need to be defined for the above scenario, like what
risk threshold allows the customer to achieve 80% auto-approval rates, but that is
what the provider should uncover during the consulting and design phase
of implementation.

The more defined the outcomes are, the more effective the decision engine
implementation can be. In the example above, if the customer knew the type of
fraud they see most or the identity verification failure rates, it could lead to the
provider considering a data analysis step before starting the consultation and
design. The data analysis step allows the provider to uncover failure points in the
existing process that contribute to high fraud or identity verification failure rates.
These failure points can be addressed during the decision engine implementation
by leveraging a combination of data and business rules.

What is applicable at a macro level is also applicable at a micro level.
The payload specifications, business rules definitions, and flow requirements
must be well-defined for the decision engine to succeed. Gaps in business rules and
unaddressed conditions can lead to unexpected runtime errors. Incomplete process
flows can lead to transaction failure. If junk characters aren’t caught during Ingress, it
can lead to failed transactions, or data and transactional charges with no valid match.

Poorly defined outcome:
Automate the customer acquisition
process and reduce manual costs.

Well-defined outcome:
Automate the customer acquisition
process by shifting identity
verification, fraud detection, and
credit check processes into a single
decision engine instance. Target
auto-approval rate to be above 80%.

Rules that could help manage proper customer expectations:

Rule 1: Education
Don’t assume your customer knows
what a decision engine is. Educate a bit.

Rule 2: Consultation and design
Consult with the customer at every step.
Pay special attention to areas like:

Rule 3: Documentation
Standardize your deliverables.
Essential deliverables include:

Rule 3: Fulfillment
Fulfillment should be systematic and
dependent on features like:

Rule 5: Validation
Validation should cover all
aspects, including:

Rule 6: Duration
Decision engines cannot be turned on
with the flip of a switch, so it’s important
to set expectations on the amount of
time required to configure and deliver
the solution.

• Ingress/Egress
• Data — Information that the

customer intends to use in the
decision-making process

• Business Rules — Define conditions,
actions, and process flow

• Compliance — Customers often
don’t know regulatory and
compliance requirements

• Capacity — Configure to support
projected volume and scale up/
down dynamically

• Business requirements artifact or
checklist

• Process flow diagram, inclusive of
business rules definitions

• System requirements — capacity,
payload, etc.

• Solution orchestrator
• Data orchestrator
• BRMS

• Configured features
• Data configurations and associated

payloads
• Ingress/Egress
• End-to-end use case validation
• Customer validations (aka user

acceptance)

- 15 -

Solution simplification
Decision engines can be leveraged to cover various use cases. They can also
combine use cases into one transactional flow. However, providers are encouraged
to break transactions down into logical use cases and leverage the orchestration
capabilities of the decision engine to provision these.

Diagram 5

In Diagram 5, above and shared earlier in this white paper, the decision engine
should be configured to treat each use case (Marketing, Identity Verification, Fraud,
Risk, and Collections) as a distinct transaction with an outcome. The provider should
also take a prescriptive approach and recommend a predefined strategy (sequence
of data and business rules to execute) for each use case that can be easily tweaked
to suit the customer’s needs.

While it’s not uncommon for large companies to want something completely custom,
providers should lead with a consultative approach and, where possible, keep the
customer’s requirements as close to standard features as possible. If the situation
requires custom-developed features, care and consideration should be taken to
ensure that these customizations can be supported and accounted for in the
cost model.

Breaking complex scenarios into simple solutions (orchestrations) can reduce
system complexity and make the implementation more scalable and supportable.
Simplification allows providers to measure the performance of the customer’s
instance against established industry benchmarks.

- 16 -

Go-to-market strategy
Many companies fail to grow their decision engine business because they did not
invest in building a good go-to-market (GTM) strategy.

Even having your decision engine built on the most modern tech stack with all the
key features isn’t enough to be successful.

Decision engines are SaaS platforms. Providers can offer packaged versions of the
platform as a product, or a configurable version. These decisions must be part of
the GTM strategy, as they dictate the amount of salesforce, support systems, and
staff required. A configurable version requires a more consultative salesforce, along
with some form of professional services — compared to a packaged version where
the setup may a lot simpler.

The GTM strategy should also define the scope of the decision engine, so it does
not get pitched as something it’s not meant to be. For example, pitching a credit
decision engine as a CRM platform, where the long-term chances of the decision
engine being successful are likely low.

A traditional GTM strategy also ensures internal alignment and funding for all the
necessary support functions. Not having this piece figured out up front could lead
to the decision engine not being operationally ready for general availability. This will
also lead to a poor customer experience, support challenges, and missed SLAs.

Data-driven insights for continuous improvement
Decision engines’ performance can deteriorate over time, due to changes in data,
conditions, or even economics. They should be tuned regularly to ensure the
performance stays optimal, which could involve updates to the business process,
strategy, application performance, or even the underlying infrastructure.

Evaluate how fine-tuning can help the use case shared previously in this white paper
in Diagram 3.

Diagram 3

A traditional GTM
strategy also
ensures internal
alignment and
funding for all the
necessary support
functions.

- 17 -

A credit union is using a decision engine to create marketing campaigns to target
new customers and prescreen them in advance to speed up the offer
acceptance process.

The credit union monitored offer activity and acceptance rates and observed a
decline in the target base over the years. After further analysis, it was determined
that, as the local demographics changed and more millennials moved into the
area, many more “emerging credit” scenarios came up. The bank realized that
conventional credit data would not be sufficient to solve this problem and decided to
add alternate data assets to the mix. This required changes in the data access setup,
segmentation criteria, and prescreen strategy.

These types of changes are all considered tuning. In this example, the customer had
to make changes to their risk strategy. In other cases, tuning could involve simply
lowering the threshold in business rules to allow more candidates to come through.

An example of a simpler tuning exercise: During the pandemic, many companies
wanted to relax criteria to allow new customers to sign up for their services
or reduce collections activity for a defined period. These changes are easy to
implement in a decision engine, as they modify the underlying business rules.
These changes are also important, as they allow customers to adapt their business
processes to the changing environment.

Data analytics needs a purpose and a plan. But as the saying goes, “no battle plan
ever survives contact with the enemy.” To add another military insight — the OODA
loop, first conceived by U.S. Air Force Colonel, John Boyd regarding the decision
cycle of observe, orient, decide, and act. Victory, Boyd posited, often resulted from
the way decisions are made. The side that reacts more quickly to situations and
processes new information more accurately should prevail. The decision process, in
other words, is a loop or — more correctly — a dynamic series of loops.

Decision engines, like any other software, require occasional maintenance, including
keeping binaries up to date and keeping the operating system current. Failure to
perform regular maintenance will likely lead to degradation of system performance
or a specific component. This could lead to incidents and eventually breach SLAs.

Avoiding pitfalls
Throughout this white paper, I have highlighted several areas that don’t cleanly align
with a decision engine’s core capabilities. Additionally, not following best practices
reduces the chances of successful implementation. Let’s look at the potential pitfalls
that could turn a decision engine implementation into a failure.

Architecture
The success of a decision engine partially depends on configurability. While
there are many architectural approaches to achieve configurability, the
recommendation is to use a microservice architecture that allows ease of
configuration and a lighter deployment package. A microservices architecture also
allows new features to be consumed with ease.

Scope of a decision engine
Not having a well-defined GTM strategy often leads to the decision engine scope
staying open-ended. This also leads to misaligned expectations. Providers are
encouraged to take a product-centric approach and define the solution patterns
and use cases the decision engine can accomplish. New features should be rolled
out as product increments vs. customer-specific solution enhancements.

Diagram 8: The Observe, Orient,
Decide, Act framework

- 18 -

Ingress/Egress
Standardization of Ingress and Egress is critical. Since decision engines involve
business rules that work on well-defined parameters, incoming and outgoing
payloads need to be standardized. This also allows providers to easily scale across
web, API, and batch capabilities. Non-standard data can lead to unexpected runtime
errors, which are difficult to triage and resolve. As much as possible, providers
should attempt to make the decision engine “foolproof.”

Modeling and attribution tools
Data modeling and attribution are advanced statistical capabilities that decision
engine providers should carefully vet. Since there cannot be a half-baked approach,
providers should consider build vs. buy vs. partner as appropriate.

User interface
It’s common to find decision engines that support a UI. Users typically expect the UI
to be customized to their specifications. Decision engine providers should draw the
line to determine what is controllable vs. not controllable. Adding a few additional
fields on the UI or changing the page flows can sound simple, but at the same
time, make the instance unique to a customer and increase maintenance tasks. A
standard UI with well-defined scenarios is recommended. Providers should also
take the time to understand how their customers intend to use the UI, so it does not
get used in a way that’s not supported.

Data cleansing and entity resolution
Data is foundational to a decision engine, and customers often want their decision
engine to consume vast quantities of data from different sources and process
it through the business rules. On most occasions, the only thing common input
between these disparate data sources is the transactional input variables, like PII.
So customers can expect the decision engine to perform data cleansing to improve
match rates or do entity resolution across data sources. Decision engines can be
designed to solve this, but due consideration should be given before making this a
standard feature. Any discrepancies or mismatches can lead to poor outcomes, and
that could lead to failure.

Data is foundational
to a decision engine

- 19 -

How can you select the right decision engine?
Financial institutions should ask several questions to
determine the best solution.
Capabilities
 • What will the decision engine be used for?
 • What payload format does the decision engine support?
 • What features can the decision engine be easily

configured for?
 • What kind of architecture is the decision engine built on?

User interface
 • Does the solution require a front-end user interface?
 • Does the decision engine provide support for

case management?
 • Does the UI have search and update capabilities?
 • Can the UI be embedded as a portlet within an

external site?
 • Is there an admin console through which user

management tasks can be performed?

Modeling and attribution
 • Does the solution require any analytical models

or attributes?
 • Does the decision engine offer the ability to implement

customer scorecards?
 • Does the decision engine offer the ability to audit

models and attributes?

Scalability
 • Does the decision engine leverage the public cloud?
 • Does the decision engine have the dynamic ability to

scale up or down?
 • What kind of geo-redundancy does the decision

engine offer?

Security
 • What kind of authentication does the decision

engine leverage?
 • What kind of data protection and encryption does the

decision engine support?
 • How does the decision engine handle Class 5 data?
 • What kind of infrastructure does the decision engine

run on?
 • How does the provider address vulnerabilities?

Data
 • What kind of data will be passed to and from the

decision engine?
 • What kind of data access is required in the use case?
 • What data sources are available in the decision engine?
 • Will there be a need for data orchestration?
 • How does the decision engine store and retrieve data?
 • What kind of data retention and archiving policies does

the decision engine have?

Rules engine
 • How complex will the business rules be?
 • Does the decision engine offer a rules engine?
 • Will there be a need for rule flows?
 • Does the rules engine have the ability to author decision

trees and matrices?
 • How often will the business rules need to be updated?
 • Does the rules engine have the ability to test standalone

rules and end-to-end flows?
 • How technical are the users of the decision engine?
 • Does the rules engine automatically produce

rule documentation?
 • What kind of regulatory requirements need to be met in

the solution?

Reporting
 • What kind of reporting requirements need to be met by

the solution?
 • Does the decision engine offer any BI tools around

transactional data?
 • Is there any batch reporting capability that comes

standard with the decision engine?
 • Does the decision engine have online reports?
 • Does the decision engine support batch input/

output feeds?

Ease of integration
 • How quickly can the solution be configured and set up?
 • What kind of test data does the provider offer?
 • Does the decision engine have an API front end?
 • What are the various connectivity protocols that the

decision engine supports?

Maintenance and Service-Level Agreement
 • What is the uptime SLA offered by the decision engine?
 • What are the typical response time thresholds that the

decision engine offers?
 • How does the decision engine perform maintenance?
 • What is the deployment technique that the decision

engine uses?
 • How often does the provider roll out upgrades?
 • How does the provider handle major version upgrades?

Pricing
 • What pricing model does the decision engine use?
 • Is pricing subscription-based or transaction-based?
 • What kind of billing schedule does the decision

engine follow?
 • How does billing work?
 • Are data fees included in the pricing?

Orchestration capabilities
 • What kind of orchestration capabilities does the

engine offer?
 • Does the decision engine offer data orchestration capabilities?
 • Is there a customer-facing admin console to make

config changes?
 • What is the deployment model? Can changes be scheduled

for deployment?
 • Does the decision engine have pre-baked solution templates?
 • Does the decision engine support custom use cases?

- 20 -

equifax.com/business/interconnect

Copyright © 2021, Equifax Inc., Atlanta, Georgia. All rights reserved. Equifax is a registered trademark of Equifax Inc. 21-106102

Conclusion
Decision engines have many use cases, but some of the most successful
applications are in the financial services industry. There is heavy reliance in this
space on data-oriented solutions with regulatory oversight. That, combined with
the need for near-real-time outcomes, makes decision engines the perfect choice.

Decision engines not only help companies consume and evaluate large quantities of
data, but they also help automate regulatory requirements and offer strategy tools
to make processes more efficient. All this packaged in a single platform results in a
high degree of automation, which can reduce manual costs significantly when done
right. However, when not done correctly, it can lead to costly operational challenges.
This white paper intends to educate and guide companies in selecting the right
decision engine, setting it up for success, avoiding costly implementation mistakes,
and ultimately, driving favorable business outcomes.

https://www.equifax.com/business/interconnect/

